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^ /I. A model with linear costs. yuLa^tbUU « 

Jjrt Let N and n denote lot size and sample size^ and let X and it denote number of 

.defectives in the lot and the sample, respectively. The acceptance number Is denoted 
i 

by c. 

Let the costs be 
CO 

nS + xS2-I- (N-n^ + (X-x)A2 for is ^ c 

and 

"c 

nS^ xS2+ (N-n)R1 + (X-x)R2 for x > c. 

(1) 

(2) 

The interpretation of the six cost    parameters depends on the kind of Inspection 

envisaged; i.e. whether Inspection is a consumer's receiving inspection; a 

producer's inspection of finished goods, or "Internal inspection" by delivery 

of goods from one department to another within the same firm. The cost    parameters 

may have quite different values when considered exclusively from a producer's or 

a consumer's point of view because certain costs are borne primarily by one of the 

parties Involved. The values of the cost    parameters also depend on whether the 

Inspection is rectifying or non-rectifying, destructive or non-destructive. In the 

following the two cost expressions are discussed and a few examples of interpretation 

are given. 

Costs associated with the sample, nS + xS«,  for brevity called "costs of sampling 

Inspection", consist of two parts:  one part,  nS.,  proportional to the number of 

Items In the sample so that S.  includes sampling and testing costs per item, and 

another part, xS.,  proportional to the number of defectives in the sample,  i.e. 

S- denotes additional costs for an inspected defective item. If defective items 

found In the sample are repaired,  say,  then S. Includes repair costs per item. 

"Costs of acceptance" are similarly composed of a part,  (H-n)A-, proportional to 

the number of items in the remainder of the lot, and another part,   (X-x)A2, 

proportional to the number of defective items accepted.    Whereas A.  usually will 

be zero or negligible. A» will often be considerable. If accepted Items are used 
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as parts In an assemply operation,  say. A* may include the manufacturing costs 

(or the price)  of an item, the costs of handling the defective item in assembling 

and disassembling, and the damage done to other parts used in the assembly.    In 

case of inspection of finished goods A. niay include costs of repair, service and 

guarantees plus loss of good-will. 

"Costs of rejection"    consist of a part,  (N-^R.  proportional to the number of 

items in the remainder of uhe lot, and another part,   (X-x)R2,  proportional to 

Che number of defective items rejected. Rejection is here taken in a broad sense 

meaning only that the lot cannot be accepted according to the sampling plan used. 

Rejection may therefore lead to sorting,  price reduction,  scrapping, or salvaging. 

If rejection means sorting, say,  then R    includes sorting costs per item and R. 

denotes additional costs for defective items found,  for example costs of repair 

or replacement. 

It is obvious  that from a practical point of view it will in general be easiest 

to obtain information on the values of the cost parameters in the case of "internal 

inspection". 

Let f»00 denote the (prior) distribution of X, i.e.  the distribution of lot quality. 

It is assumed that this distribution is a mixed binomial distribution, i.e. 

fN(X)  -    /(x)pXqN"XdW(p) (3) 

where W(p) denotes a cumulative distribution function (independent of N). 

Drawing a sample without replacement from each lot (hypergcometric sampling) and 

computing the average costs we find 
1 

K(N,n,c) - / K(N,n,c,p)dW(p) (A) 
0 

where 
K(N,n,c,p) = nCS^ S2p) + (N-nHU^ A2p)P(p) + (R^ R2P)Q(p)), (5) 

and c 
P(p) = B(c,n,p) = Z (£)pXqn'X, Q(p) - l-P(p).      (6) 

x=0 

For convenience the frequency function corresponding to W(p) will be called the 

distribution of the process average or the distribution of p    as distinct from 

fN(X) which gives the distribution of X/N,  i.e. the distribution of lot quality. 

Starting from (5) we introduce the three cost  functions 

kg(p)  - S^- S2p,        ka(p)  = A^ A2p,       kr(p)  - R^ R2p, (7) 

uhe (economic) break-even quality. 

Pr= (R^ A1)/(A2-R2), 0< pr< 1, and 

k (p) = k (p) for p ^ p,. and k (p) for p> p . (8) 
TU      ci r     r L 
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The function k (p) gives the unavoidable (minimum) costs, I.e. the coots correspond- m   ' of lafppaatloi 
Ing to the situation where perfect knowledge of quality exists without costs and 

all lots are classified correctly on the basis of the corresponding process 

average, viz. accepted for pip and rejected for p> p . 

Averages over the prior distribution are denoted by k ,k , etc., and costs per 

Item are denoted by k, and costs per lot by the corresponding K, I.e. K = Nk, 

The average costs for the three cases without sampling Inspection, I.e. the ca3es 

where (a) all lots are classified correctly, (b) all lots are accepted, and (c) 

all lots are rejected, then become k ,k , and k respectively. These cases are 

useful "reference cases" since sampling Inspection Is justified only If 

k-k < mln{k - k ,k - k ), where k » K(N,n,c)/N. 
m     a  m r  m 

Case (a) will usually be considered as the basic reference case and average costs 

for other cases will therefore be reduced by k , since k represents the average 

fixed costs per Item which will be Incurred Irrespective of the decision raade. 

The cost differences 

1 pr 
V kn.' / 0< (P)-* (PWP) and    k - k - / (k (p)-k (p))dW(p) am a r rmir a 

Pr 0 

represent average decision losses in case (b) and (c) respectively, and k - k 
S   10 

represents the average "loss" by inspection. 

From (4) and (5) we find 
pr 1 

K-K - n(k -k )+(N-n)(A.-0{/(p -p)Q(p)dW(p) + /(p-pr)P(p)dW(p)),        (9) 
mam lllr r o p rr 

the two terms giving the average costs of sampling inspection and the average 

decision losses, respectively. 

Putting R(N,n,c) =  (K(N,n,c)-K )/(k - km), we find 
m Pr 

8 m 1 

^Zfi  /(Pr-p)Q(p)dW(p) + /(p-pr)P(p)dW(p)),    (10) 

% 

R = n + 
p -p rs rm 0 p 

r 

the two terms again giving the costs of sampling inspection and the average 

decision losses,, respectively, but here using the average costs of sampling 

inspection (minus k ) per item in the sample as economic unit. 

2. Results for double binomial prior distributions. 

The simplest theory of sampling inspection is based on the assumption that 

lots submitted for inspection originate: from one of two possible quality levels, 

p and p., Pj < P«^ and that the process average p occurs with probability w , 
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p. consequently with probability w ■ 1-v,. The standardized cost function (10) 

then takes the form 

R = n + (N-nXr^Cp^ + r2P(P2)) (11) 

^here yf  W^V^^il?^?^ "  lka<P1)-
k
r<Pi) IV^s'V'  1 * l'7' and pmaplwl+prW2' 

I.e. R depends on four parameters only, viz. p,^p^y,;/«. 

Since P(p) •» B(c,n,p) denotes the operating characteristic, Q(pT) and P(p9) equal 

the producer's and the consumer's risks,  respectively. 

We shall discusa ten systems of samplir^ plans defined as follows: 

(1). Bayesian plans,  i.e. plans minimizing R. 

Rostricted Bayesian plans.i.e. piano minimizing R under some suitably chosen 

restriction on the operating characteristic^ viz. 

I (2). Mln R for Q<pl) - a or P(p2) » ß. q pq 

(3). Min R for ?{]}r) - 1/2 where pn =    (log -^/(log -~i). 0 0 q2 p1q2 

(4). Mln R for Q(p1)  - a/N or P(p2) = ß/N. 

(5). Mln R for P(P2)/Q(P1) - p. 

Plans defined by two risks, vl«, 

| (6). Q(P1) ■ oc/N and P(p2) - ß/N. 

(7). Q(P1) = ot and P(p2) - ß/N (or P(p2) = ß and Q(p1) = a/N;. 

(8). P(P0) - 1/2 and Q(P1)  - a/N (or P(p2) - ß/N). 

(9). Q(p1) = a and P(p2) « ß. 

Finally we consider percentage inspection defined as 

(10). n = |j,N and c = p n. 

In all these definitions a,ß^p, and |i represent suitably chosen positive constants 

which nay be different from case to case. 

For each system of campling plans it has been shown in [l] how the exact coluticn 

may be obtained and, since this solution is an implicit one, an explicit solution 

is given as an asymptotic expansion for N -> oo . Tables have been provided in [?.] 

and [3]. 

In this section we shall assume that the quality distribution of submitted lots is 

a double binomial and compare the costs of the various systems under this assumption. 

As a measure of efficiency we use the ratio e(N,n,c) = R (N)/R(N,n,c), where RQOO 

denotes the costs of the optimum (Bayesian) plan and R(N,n,c) denotes the costs 

of the plan In question. 

The systems defined by (1) - (8) fall lato two classes depending on whether both 
_1 -1    " 

risks are 0(N ) or one of the risks is constant and the other is 0(N ) . 
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The first class contains systems (1), (3), (4), (5), (6), and (8). Asymptotically 

the relation between acceptance number and sample size has the form 

c - p n + a2+ a.n' + 0(n" ), and In N ■ (p.n + jln n + 1^+ K2n' + 0(n" ), which 

by Inversion determines n as a function of N, and R ■ n + 6.+62n" + 0(n ), the 

constants p. and 9. being the same In all cases (depending on (p^Pj) only), 

whereas the remaining constants are found as functions of the parameters In the 

model and the restriction. This means that n = 0(ln N) and that the average decision 

loss, (N-n^jQCp-Ky.PCpJ), tends to a constant (because Q(P1) and P(p2) are 0(N' )). 

The second class consists of systems (2) and (7). Asymptotically the relation 
4   1-1/2    -3/2 

between acceptance number and sample size has the form c ■ p.n + Z a.n   + 0(n '  ), 
J  1»1 

p representing the quality level having a constant risk, 

In N » (p.n + r-ln n + Z K.n1'  ' + 0(n'  ), which determines n as a function of N, 

-1/2 
and R - 8N + (l-6)n + 5.+ 0(n"  ), the constants (p. and 8 being the same in the 

two cases. Because of the constant risk all relations are considerably more complicated 

than for the first class and R becomes 0(N) instead of 0(ln N). For large lots it is 

therefore not advisable to use a system with a fixed comsumer^s or producer's rick 

and correspondingly high costs as compared with a system having decreasing risk". 

The system with both risks fixed and the system with parcentage inspection both 

lead to R ■ 0(N) and asymptotically they have the same costs for \i ■ y.ct + 7-ß. 

The system with fixed risks uses a fixed sample size so that the decision loss beccmns 

of order N, whereas percentage Inspection has n •« 0(N) and a decision loss of order 
-N 

e . 

The restricted Bayesian plans with both risks decreasing and the corresponding plans 

based on two risks have an economic efficiency tending to 1 for N -> « as compared 

to the Bayesian plans. (The efficiency pf plans having at least one risk fixed tends 

to zero). Tals result means that wrong values of the weights of the prior distribution 

and wrong values of the cost parameters have a secondary influence on the efficiency 

which tends to 1 if only (pjjP«) are correct. If wrong values of (p-^P«)^ (p1,p2) say, 

are used for finding the plans then the efficiency tends to e, 0 < e < 1, if and only 

if p.< Pj < p9< p«, otherwise the efficiency tends to 0. 

As an example consider a case with p « 0.01, w ■ 0,85, and p» 0.05, w2a 0,15. Let 

Che costs of sampling inspection be 0.40 (economic units) per item in the sample, i.e. 

S-« 0.40 and S = 0, the costs of rejection 0,30 per item in the remainder, i.e. 

R = 0.30 and R » 0, and the costs of acceptance per defective item 10.00, i,e. 

A,« 0 and A » 10.00. It follows that p - 0.03, 7» 0.6296, and 7 = 0.1111. 

In the table we have compared plans from 9 systems defined as follows; 



(1). Ssyes. Plans minimizing R(N,n,c). 

(2). IQL. Min R for P(p0) - 1/2, p0= 0.0250. 

(3). LTPD. Min R for P(p ) - 0.10. 

(4). AQL. Min R for Q(p1) - 0.05. 

(5). Fixed risk. QCp,) « 0.05 and P^) = 0.10. 

(6). Percentage inspection. \i « 0.057,+ O.lOy ■ 0.04259. 

(7). Dodge. The AQL system with 5% consumer's risk proposed by Dodge in 

[6] with AQL = p^ 

(8). Mil-Std. Military-Standard 105D with AQL « p^ 

(9).     Mlnimax regret plans obtained by minimizing max{K(N,n,c;p)-Nk (p)'}. 
p 

For each of 7 lot sizes the plans and the corresponding costs have been found 

and the efficiency has been computed. 

3. Results for continuous prior distributiona of process average. 

If the process average varies at random according to a continuous distribution 

with density w(p) we ge'e  optimum (Bayesian) plans with properties quite different 

from those described in section 2. The asymptotic results, which have been derived 

in [4], are the following: c = p n + a + 0(n" ), n - X.^N + Ju+ o(l), and R = 2n + o(l), 

where a,^-, and X, depend on p ,w(p ); and the first two derivatives of w(p) for 

P = P^. 

Furthermore,  the asymptotic efficiency of a plan (N,n1,c.) in relation to the optimum 

e<N'Vci>-2/(^+^) (12) 

plan (N,n0,c0) is 

if both plans use the right relation between sample size and acceptance number, 

otherwise the efficiency tends to zero. 

4. The mlniroax regret solution. 

If the prior distribution is unknown one may use the minimax regret method to derive 

a sampling plan, see [?]. The main asymptotic results are the following: 
-1 2/3    1/3 

c = p n + a + 0(n ) and n « X.N  + X-N   + 0(1), where a depends on p , X., and x,. 

on p and the cost constants. rr 
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5. A more general model. 

The model above is based on the assumptions that costs are linear In p^ and that 

the distribution of the number of defectives In the sample (for given p) la binomial. 

In the present section we shall state the asymptotic results obtained In a recent paper 

[5]  concerning a much more general model. 

Consider a problem with two decisions only, acceptance and rejection say, where 

acceptance la preferred If the unknown parameter Q is  less than or equal to a 

specified break-even value 6 ,  and rejection id preferred for Q > 6-,  We assume 

that the statistic t ■ t(xw....:c ) is sufficient for 6,  and that the decision 
1    n 0 

rule has the form: "Accept If t ^ t and reject otherwise," The problem is to determine 

the optimum n and t . 

We shall introduce several functions of 6  such as w(0); a(ö); etc. and to shorten the 

notation we write w(0o) = w, w'(C_) ~ w^ etc. 

The model is based on the following assumptions: 

(1) .  The density w(ö) of the prior distribution of 0 is twice differentiablc in 

an open interval about the brtak-even value 0- and w > 0. 

(2).  The loss function 1^(0)^ i.e. the loss of a wrong decision, may be written 

as 

i il(0o'e) (1-:-i11(
0-(V+ ••• >      for 0 § 0O 

1(0) - •        v (13) 

^12(0-0O) 
2(H1<21(0-0O)+ ... )      for 0> 0O 

where (v.^v«) arc non-negative and (jU,jL) are positive constants. 

2 
(3),  Conditional on 6,  the statistic t has mean 0, variance a (0)/n, and 

coefficient of skewness ß(0)/i/n> and the operating characteristic P(0) of the 

decision rule, i.e. Pr(t ^ t |0}, may be written as AO. Edgew. rth expansion 

P(0) = <S(x)-ß(0)(x2-l)(p(x)/6/n + OOi"1),     x = (tO-0)yn/a(0)      (14) 

where cp and $ denote the density and the cumulative distribution function for the 

standardized normal distribution. The functions a(0) and ß(0) are assumed to be 

twice differentiablc. 

s    -1 
(4).  The (expected) sampling costs are r (n) « kn (l-!-0(n )). 

s 

From these assumptions we find the average regret r(n,t ) as 

r(n,t0) - r^nHr^t0), (15) 



o where the average decision loss is 

Q 

r^t0) - / l(0)Q(e)w(0)de + / l(0)P(0)w(9)d0 , (16) 

with Q(0) = 1-P(0). 

0O 

0O 

The Bayesian sampling plan (n0,t ) is found by minimizing r(n;t ). Because of the 

continuity of 1(0), P(e), and w(0) in the neighbourhood of 0 and the decreasing 

standard deviation of t, the asymptotic solution depends only on the properties of 

the functions involved at 0.. 

It is obvious that we might have chosen one of the costs constants, k for example, 

as the economic unit, i.e. the solution will depend on the ratios jU/k and l^/k 

only. In deriving the asymptotic results we assume that the two ratios tend to 

^  infinity, and that ijAL is constant. We shall treat n end  t as continuous variables, 

From (15) it follows that the optimum values of (n,t )are determined from the 

equations dr./dt ■ 0 and -or./on - or /on. For any n the optimum value of t , i.e. 
i 0 -      8 

the value minimizing r(n,t ), may be found by solving the first of these equations. 

The solution will be denoted tn(n). Inserting t = tn(n) into the second equation we 

get an equation in n alone which gives n = n  and finally tn « 
to^no^ * '^ie ^unct:i-ons 

r.(n,t (n)) and r(n,t (n)) will be denoted r1(n) and r(n), respectively. 

Comparing (10) with (15) and (16) wc find that (asymptotically) the model simplifies 

to the one considered above, if the cost functions are chosen as r (n) «= (p -p )n 
A S        S  In 

and Kp) W H|p-p |, and if furthermore a (p) » pq and ß(p) - (q-p)/|/pq, since (14) 

then gives the Edgeworth expansion for the cumulacive binomial distribution. 

1^ It is, however, clear that the present model also covers cases with non-linear 

cost functions, and operating characteristics different from the binomial, for 

example, the Poisson and the normal. 
. ■■•■ 

As auxiliary functions we introduce the incomplete normal moment of order v 
00 00 

(z) - / tvcp(t-l-z)dt - / (t-z)v cp(t)dt,      v ?S 0, (17) 
0 z 

and 

iv(z) - i! mv(
z) +i2 mv(-

z)- (18) 

As a measure of efficiency of a non-optimum plan (n,t ) we shall use the ratio 

e(n,t0)  =  r(n0,t0)/r(n,t
0). 

m 
v 
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This measure of efficiency lies between 0 and 1, it is invariant to the choice of 

origin and scale of costs (or utilities), and it expresses directly what costs could 

be reduced to (by using the optimum sampling plan) as a fraction of the costs for      * 

the non-optimum plan. 

If t  =.0, + o(l), G- 4 0O^ it is easy to show that e —> 0 as n —> oo. The break- 

even value 0. is therefore the most important parameter. 

We shall in particular study the efficiency first under the assumption that t0(n) 

is known, so that the efficiency becomes e(n) = r(iO/r(n), and next under the 

assumption that only Ö is known, so that t ■ 0 and e(n,0 ) ■ r(n0,t )/r(n,0o). 

In stating the results obtained it is essential to distinguish between two cases, 

v2 '> vl 8ay' anc* v2 " vi ^ v* 

Results for Vj * v. ■ v. 

The optimum relationship between t and n is given by 

t0 - 0O + attZ/fi"-* bo/n + 0(n"
3/2), (19) 

where a and b are determined from the equations 

l^a) = i2mv(-a) (20) 

and 

b = -awVw - (v+l)a'+(a2+v-l)p/6 - (X (i11i1rav+1Ca)+l21i2inv+1(-a))/lv+1(a).   (21) 

The optimum sample size is 

v;here y ■ wav      l^-(a)/2sk   and 

6 - a(awVw+(v+l)ß/ö)+ a(-l11l1mv+2(a)+ l21l2mv+2(-a))/lv+1(a). 

The average decision loss for t    « t0(n) is 

, N 
wiv+l(a>    a   | I .   .   (v+l)8      , n.lv  \ ,0,N rl(n>    "   -TTT wS I 1 + (^2)Tfi   + ^n> /  ' (23> 

and the minimum regret becomes 

'(V   ■   \^2^   [X - (v^2)(2^1)tn--   +2^))- <2*) 

'- 
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For the efficiency we get 

0 x(v+l)/2 
1     ^     v+1    /n.x8 j.     2«     i _01 /os^ 

e(n)     28+v+l  Cn0
;   + 28+v+l \n / ^:>; 

and (v+l)/2 , . 
1 vH    /IL. • x     2s       ^0 •■ j^fl^ ^M 

^ -•   -   (7")   + 77^77   T^ ' T      TTT   > (26) e(n,0o)~ 2o+v+l  ^    ^ 28+v+l ' n   , iv+l(a)    ' 

i.e.  the second member of  (25) has been changed by a constant factor. 

It follows that t   —> d , the difference t    - 0   being of order l/,n if I.  =f U 

(non-symmetric loss function), and of order 1/n for JL,  «= U    because then a = 0 from 

(20). 

If JL. and jU are proportional to lot size N then the optimum sample size n    becomes 

1/2 
proportional to N *  v ' according to (22), By varying s ^ 1 and v 1 0 we may 

get all powers of N less than or equal to 2/3. For v B s ■ 1 we get N 

For the optimum plan the ratio of the average decision loss to the sampling costs 

tends to 2s/(v+l), cf, (2A). 

From (25) it follows that the efficiency of a plan based on the right relationship 

between t and n will be high, even if n deviates considerably from nn. For v = s = 1 

we get (12). 

If 0- is koown we may get a rather high efficiency by using t ■ 0. even if n 

deviates from n-, see (26). 

If n has been determined from a wrongly chosen s we get n or: n , 6 ^ 1, or if a 

discrete prior distribution has been used instead of the correct continuous one 

we get n a: In n., and in both cases lim e(n) ■ 0. 

For the simple symmetric loss function 1(0) ■ L-|0— 0-.|v one more term of the above 

expansions may be found in [5|. 

Results for Vj > v,. 

The optimum relationship between t and n is given by 

t0 - 0O + am//n - a((v1+v2+l)ln m + InX )/(mvn) + o(l/m n)    (2?) 

., .  i 
v2"vi 

where m - V(v2 - v^ln n and   \ « {lit a       l i-VCijTO', + 1)). 

The optimum sample size is 
2/(2s+v2+l) (v:>+l)/(2s+v2+l) 

n0 - 72 ~      {(21n 72)/(2s+v2+l)) 
Z      4  (l+o(l)),  (28) 

v2+l      (v2+l)/2 
where 72 - wot    (v^Vj)       i2/2sk. 
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The average decision loss for t   = ^C") is 

V1 i 
r^n)    -    (wl2/(igH))(am/\/n) l      (l+oCm"1)) (29) 

and the minimum regret becomes 

I r(n0) = rs(n0)(2s + v2 + l)/(v2 + Dd+o^
1)). (30) 

For the efficiency we get 

e(n) 28+v2+l 

(v2+l)/2 
\S          o          / n.in n \ 1L     +^2s    _0 \ 0^ 

n0j    + 2s+v2+l \n In n0/ ^  ; 

. Vj-M    /_  \S n_        / n^ln n 

and 

v2+l      ,    ,.       , /noln n \<V2+1)/2 [<Vvl)/2| ^»v.+lWXV1) 
i r ~ —2  S-N + —2»  i .2        ln__! 1    1  

e(n,0o) 
N  2s+v2+l \n0 j * 23+v2+l U In n^       j   v2+l Vvl, 

(32) 

[_ m    J i2a    (Vj^+O 

so that 11m e(n,0 ) ■ 0 even if n is proportional to n. 

For Vj > v. it is more serious to reject a lot which should have been accepted 

than to accept a lot which should have been rejected. (It should be remembered that 

for large n it is only losses in the neighbourhood of 0 that matter). This is the 

reason for the result that t- tends to 0 from above, the difference t0 - 0. being 

of order V (In n)/n, so that the rate of convergence is considerably slower than 

for v2 » v.. 

As a consequence of this result the average decision loss consists essentially of the 

loss from wrongly accepting bad lots. For the optimum plan the ratio of the average 

decision loss to the sampling costs tends to 2s/(v2+l)i, see (30). 
con- 

As a further ^sequence it will be seen from (32) that it is not satisfactory to put 

t = 0 because such a plan will have an efficiency tending to zero for n - 00. 

The results above depend essentially on the assumption that the density of the 

prior distribution is positive and differentiable in the neighbourhood of 0., and 

furthermore on the assumption that 1(0O) ■ 0 and 1(0) >0 for 0 4 0O» 

If the prior distribution io discrete, for example a two-point distribution given 

by Pr{0"0.) » w , 1 = 1^2, then we get similar results as in section 2, i.e. 

t- —> 0 where 0 depends on öj and 02 only, n becomes proportional to the 

logarithm of a linear combination of 1.(0,) and )Jß~),  and the ratio of the average 

decision loss to the sampling costs will be of order n . 

If 1(0) ■ 0 for 0. i 0 ^ 0«, i.e. there exists an Indifference zone Instead of a 

break-even point, then we get similar results as for a discrete prior distribution. 

: 
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#"   Considering restricted Bayesian plans it is clear that any restriction of the 

form P(e,) ■ P, say, where 6. 4 0n an^ ^ is a Siven number, will lead to 

t —> 0. and therefore to an efficiency tending to zero. Restrictions should 

therefore be of the form P(0n) = P or PC^/QCöj) ■• Pf  where p is a constant 

01 < e0 < e2. 

and 

6. Discussion. 

Bayesian sampling plans should be used if the prior distribution is known and 

stable, if the sampling costs and the decision losses are known, and if the 

purpose is to minimize the sum of the average sampling costs and decision losses for 

a  scries of lots. 

The above results show how the Bayesian plans depend on the assumptions. We have 

found, for example, ho« the optimum sample size depends on the main parameters in 

the model. Further investigations are needed to evaluate these results. It is, 

however, fortunate that the formulas for the efficiency of non-optimum plans show 

a high degree of insensitlvity to deviations from the optimum sample size 

if only the break-even point is known. 

In practice a system of sampling plans is often required to serve several porposes 

- besides being easy to administer. In particular we shall here mention (a) that 

the system should protect the consumer against the consequences of deterioration 

of the prior distribution, (b) that the system should work as an incentive for 

the producer to produce better quality or at least to keep to the quality agreed 

upon, end  (c) that average costs should be minimized. So: far, however, there has not 

been developed a theory taking all these aspects into accotmt. 

The purposes (a) and (b) above may be obtained by introducing restrictions on the 

operating characteristic, and by alternating between normal and tightened inspection. 

An approximation to a solution may therefore be obtained by using a restricted 

Bayesian plan with decreasing producer's and consumer's risks combined with a 

feed-back mechanism which induces shifts between normal and tightened inspection 

according to changes in the prior distribution. 

It would be very useful for the direction of further research in this area if 

inspection departments would publish their experiences with respect to costs and 

prior distributions. Great masses of data must exist which could help to solve 

problems regarding the form and stability of prior distributions. 
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